

Technology Innovation and Development –

Industry Update The Lockheed Martin Perspective

> Lockheed Martin MS2 18 November 2009

Dr. Doug Reep Director, Airborne Early Warning Radar and Advanced Programs MS2 Radar Systems, Syracuse, NY

Copyright 2009 Lockheed Martin Corporation

Outline and Key Messages

Outline

 Current Trend in Phased Array Radar Technology
Key PAR Enabling Technologies
Technology Maturity Status
Future Research Areas for the MPAR

Key Messages

 Multi-function Phased Array Radar can benefit from advancement in DOD phased array technology and Commercial packaging
Investment in MPAR specific technical areas is needed from the MPAR community

- Fast Search rates
- Agile, Adaptive Scan

High Reliability

Higher sensitivity

Increased Performance

MPAR Program Challenges

• Affordability

- High performance phased array radar
 - High production cost must be overcome by R&D into use of mass market COTS technologies
 - Low operation and maintenance cost
- Increased performance

Simultaneous Multi-mission

- Enhanced Hazardous weather mission
- Aircraft surveillance and track
 - **DHS** mission

Dual Pol phased array

Weather feature extraction

Mission Needs Drives MPAR Requirements

MISSION NEEDS	REQUIREMENT	SYSTEM DRIVERS
Hazardous Weather Detection	Angular Resolution	Aperture size and number of dual pol T/R elements
Weather feature extraction	Differential Reflectivity Bias	Requires 45 dB of cross pol isolation for the simultaneous transmit configuration
Simultaneous Weather and Aircraft surveillance	Multi Function	Higher power, Digital Beam Forming and Multi frequency capabilities
High range resolution	Classification of Small and Low Non-cooperative Targets	Wide RF bandwidth and High clutter suppression capabilities
Enhanced system detectability	High System Dynamic Range and Clutter Attenuation	Multi receivers and Digital Beam Forming capabilities
Ground Clutter Suppression	High Clutter Attenuation	High stability architecture design (distributed waveform generators)

PAR Technology Maturity Scorecard

HHHH	B Res	asic earch	Applied Research	Adva n Rese	nced D earch	Develop Trans	ment/ ition	Fielded	
TRL	1	2	3	4	5	6	7	8	9
GaAs MMICs									
GaN MMICs							A EE o		1:4.7
Ultra-Low Cost Packaging							ΑΠΟΓ	aabi	lity
Clutter Rejection									
Simultaneous Wx+Track									
Multi-Face Subarray Simultaneous Beams									
Digital PAR Transceiver							<u>.</u>	mico	ion
Full Array DAR Processing							luiti-i	11155	ΙΟΠ
15 dB Cross Pol									
25-45 dB Cross Pol								Dual	Pol

Innovations in PAR; D Reep 18 Nov 2009 -6

Technology Development Enablers

Weather Processing Dual pol phased array

DoD

Phased Array Technology Air Cooled GaN MMICS

> COTS Signal Processing Low Cost Electronics

> > **GaN MMICS**

COTS Signal Processing Low Cost Electronics RFICs

Innovations in PAR; D Reep 18 Nov 2009 -7

Possible Areas for MPAR R&D

Demonstrate multi-mission time line

Derisk simultaneous weather and aircraft surveillance and track missions time line

 Develop and build demonstrator to verify system's ability to support multi-mission scheduling

Dual Pol Configuration for Phased Array Achieve differential reflectivity bias requirement without driving system cost

> Explore dual pol configurations and identify optimal configuration that will simplify system architecture and meet system performance requirements

MIMO for Phased Arrays

Increases radar performance through use of multiple, independent transmit and receive chains

 Explore application of MIMO techniques to subarray beamforming

Way Forward

Industry and DoD are investing in core technology enablers for other applications...

...for MPAR to become reality, the User Agencies need to do the same to apply these towards their applications Time is NOW to fully fund R&D in order to meet 2015-2020 time frame for deployment.

- Joint mission needs and requirements definition
- Core enabling research, including testing and demos
- Analysis of Alternatives and Cost-Benefits

MPAR is Achievable... But the Program Needs Agency R&D Funding to Transition From the "Vision" to an Engineering "Concept"